$\mathrm{TD} \; 3$

Arbres de classification

Ici log est le logarithme neperien.

Exercice 1

On considère un jeu de données $v_1, \ldots, v_N \in \{1, 2, \ldots, k\}$ (les nombres symbolisent k classes). On définit alors l'entropie empirique comme

$$E(v_1, \dots, v_N) = -\sum_{\ell=1}^k \hat{p}_\ell \log(\hat{p}_\ell)$$

en définissant

$$\hat{p}_{\ell} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{v_i = \ell}$$

et en utilisant la convention $0 * \log(0) = 0$. Ici log est en base e avec $\log(\exp(1)) = 1$.

L'entropie empirique représente la variabilité des données.

- 1) Montrer que l'entropie est ≥ 0 et qu'elle est égale à 0 si et seulement si $v_1 = \cdots = v_N$.
- **2)** Calculer E(1, 2, 3, 2, 3, 2, 2, 2, 1, 2)
- 3) Calculer E(1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2).

Exercice 2

On a un jeu de données défini par ce tableau.

i	1	2	3	4	5	6	7	8	9	10
 $x^{(i)}$	(0.1, 0.1)	(0.2, 0.2)	(0.3, 0.8)	(0.4, 0.4)	(0.5, 0.7)	(0.6, 0.3)	(0.7, 0.5)	(0.8, 0.9)	(0.9, 0.6)	(1,1)
y_i	1	2	1	1	1	2	2	2	2	2

On note $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$ pour i = 1, ..., 10.

- 1) Calculer $E(y_1, ..., y_{10})$.
- 2) On cherche à séparer les données (y_1, \ldots, y_{10}) en 2 groupes. Le groupe 1 sera celui des y_i pour lesquels $x_1^{(i)} \leq t$ avec t = 0.45 et le groupe 2 sera celui des autres y_i . On note u_1, \ldots, u_k les éléments du groupe 1 et v_1, \ldots, v_ℓ les éléments du groupe 2 (on a $k + \ell = 10$). Calculer

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

qui est l'entropie empirique moyenne après séparation en 2 groupes. Faire un dessin qui représente cela.

3) On cherche à nouveau à séparer les données (y_1, \ldots, y_{10}) en 2 groupes. Cette fois le groupe 1 sera celui des y_i pour lesquels $x_2^{(i)} \leq s$ avec s = 0.45 et le groupe 2 sera celui des autres y_i . On note u_1, \ldots, u_k les éléments du groupe 1 et v_1, \ldots, v_ℓ les éléments du groupe 2 (on a $k + \ell = 10$). Calculer

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell).$$

Faire un dessin qui représente cela.

- 4) Quelle séparation en deux groupes préférez-vous dans une optique de classification supervisée, et pourquoi?
- 5) La construction d'un arbre de classification se fait selon le principe des questions précédentes. Nous allons illustrer cela en quelques étapes ici (faire un dessin à chaque étape).
 - 1. Matériel de base créé par François Bachoc.

— Faire la séparation de la question 2, mais cette fois, trouver la valeure de t qui minimise la quantité

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

que l'on notera e_1 .

— Ensuite, faire la même chose mais selon la question 3 en trouvant la valeur de s qui minimise la quantité

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

que l'on notera e_2 .

- Garder celle des deux séparations qui correspond à la plus petite valeure entre e_1 et e_2 . Cela revient à diviser le carré $[0,1]^2$ en 2 rectangles.
- Dans chacun des deux rectangles faire la même chose que toutes les étapes d'avant (si il y a encore deux classes représentées). A la fin, on a divisé le carré $[0,1]^2$ en 3 ou 4 rectangles. Cela correspond aux premières étapes de construction d'un arbre de classification. Dans chacun des rectangles, on classifie un nouveau x selon la classe qui est majoritaire dans le rectangle, parmi les 10 données d'apprentissage.